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A Data Fusion Algorithm for Mapping
Sea-Ice Concentrations from Special Sensor
Microwave/Imager Data

Kim C. Partington

‘Abstract—Ice charts from the U.S. National Ice Center, Wash-
ington, DC, are compared to published algorithms for generating
sea-ice concentrations from SSM/I data. The same ice charts, in
a form that includes information derived only from RADARSAT,
OLS, and AVHRR data, are used in an operational algorithm that
effectively tunes a hybrid of the Bootstrap and NASA Team algo-
rithms and principal components of the SSM/I data to the time and
region associated with the ice chart. This “tuned” algorithm is then
used to interpolate ice concentrations elsewhere in the ice chart
where no cloud-free, high resolution, visible, infrared or active mi-
crowave satellite data are available. The algorithm is designed to
operate in near real time to assist the ice analysts in their other-
wise manually-intensive task of compiling ice charts for vessels op-
erating in ice-infested waters.

Index Terms—Algorithm, data fusion, ice charts, passive
microwave, sea-ice, SSM/L.

1. INTRODUCTION

ASSIVE microwave data are unique in providing routine

hemispheric-scale pictures of sea-ice conditions to the sci-
entific and operational communities, and two decades of obser-
vations have now been accumulated by the Defense Meteorolog-
ical Satellite Program (DMSP) special sensor microwave/im-
ager (SSM/T) and its predecessor, the scanning multichannel mi-
crowave radiometer (SMMR). This is a sufficiently long time
series to support studies related to climate-related events, such
as the Antarctic Circumpolar Wave [1] and to extract informa-
tion on systematic changes in ice conditions that may be related
to climate change [2].

As well as being of scientific value, SSM/I data are also ex-
tremely important to the operational community, which has the
task of supporting surface and subsurface ocean-going vessels
with timely and regular information on ice conditions [3]. Ice
analysts use SSM/I data to prepare ice charts for regular dis-
semination to the operational community, both in the U.S. at
the National Ice Center (NIC), Washington, DC, and elsewhere

around the world in areas where sea ice presents a hazard. SSM/I

is important to the operational community because it provides
wide and complete (cloud-free) coverage on a daily basis.
Although SSM/I data are important to the operational com-
munity, they do have limitations. SSM/I-derived sea ice prod-
ucts have coarse resolution (of the order of 25-50 km in the 19
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to 37 GHz frequency range), so the data tend to be used after
all higher resolution data sources have been exhausted. Other
limitations are related to the algorithms used for converting the
SSM/I brightness temperatures into ice concentrations. In con-
trast to active microwaves and visible and infrared satellite data,
which are interpreted manually at the NIC, passive microwave
data are converted to a geophysical product prior to use by the
ice analysts. In general, these SSM/I algorithms do not make
use of ancillary information so they are limited by the ambigu-
ities inherent in passive microwave data. These ambiguities in-
clude confusion between weather artifacts, the presence of sea
ice in areas of open water, and confusion between melting sea
ice (for example indicated by surface melt-ponds) and areas of
lower ice concentration [4]. The result of these algorithm limi-
tations is that SSM/I data are less useful to the operational and
scientific community than would be expected from the excellent
coverage and the apparent transparency of clouds. In fact, with
the exception of the location of the sea ice edge, SSM/I data are
used by analysts at the NIC in a qualitative rather than quantita-
tive manner in compiling ice charts.

The purpose of this paper is to show how operational ice
charts provided by the NIC can be compared to sea-ice con-
centration algorithms and can form part of an operational data
fusion algorithm. Operational ice charts provide the least am-
biguous form of wide coverage reference information on ice
conditions, as they are based on an expert manual synthesis of
observations from a wide variety of sources. These include satel-
lite observations, knowledge of sea ice and ocean climatology,
considerations of continuity, weather predictions, model fore-
casts, ice charts from other ice centers, and, when available, air-
borne and ship observations.

II. U.S. NATIONAL ICE CENTER ICE CHARTS

The NIC provides weekly ice charts for all ice-covered seas
and achieves this by maintaining a group of qualified ice ana-
lysts, each with the responsibility for generating ice charts in
one or more sectors of the Arctic and Antarctic. Some of the an-
alysts are naval personnel who are assigned to the ice center for a
period of 2-3 years, while others are civilian personnel who are
not subject to limited assignments. The analysts are supported
by a senior analyst who controls the quality of the final product.
The ice analysts undergo formal training and follow a set proce-
dure for generating ice charts, which ensures that high quality
input data (high spatial resolution) takes precedence over lower
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Fig. 1. Existing ice analysis procedure at the NIC, showing the use of
SSMI/I data processed using a conventional algorithm. Numbers indicate steps
in the ice analysis procedure referred to in the text. The DMSP SSM/I ice
concentrations are generated using both the NASA Team algorithm, which has
been supplied by both the NOAA Environmental Prediction Center (NCEP)
and the Fleet Numerical Modeling and Oceanography Center (FNMOC) and
the CAL/VAL algorithm (FNMOC). To date, analysts have largely made use of.
the NASA Team product rather than the CAL/VAL product.

quality input data (low spatial resolution and/or cloud obscura-
tion).

The ice analysis procedure at NIC is illustrated in Fig. 1.
The analyst starts by compiling background information, in-
cluding the ice chart from the previous week, digital climatology
data [5], weather predictions, and output from the coupled ice-
ocean forecast model, the Polar Ice Prediction System (PIPS)
[6]. These data are used to provide the analyst with the best pos-
sible understanding of current, regional, background conditions
from which to interpret the data (step 0, Fig. 1). The analyst then
starts with the highest available resolution of data. On occasion,
this may include some airborne or shipborne observations, butin
general, these will not be available. In this case, the analyst starts
with RADARSAT synthetic aperture radar (SAR) data. The an-
alyst will map the region covered by RADARSAT data into re-
gions of approximately “uniform” total and partial ice concen-
trations. In the event that there is ambiguity in the interpretation
of RADARSAT data (for example, in terms of ice-water ambi-
guity in the signature), the analyst will use other data sources to
resolve the interpretation, including weather fields, other satel-
lite imagery, climatology, and the coupled ice-ocean model fore-
cast. In practice, the ambiguity is almost always resolved with
little residual uncertainty by the use of a combination of these
other data sources. One or more of RADARSAT, AVHRR, and
OLS data, along with knowledge of the ice climatology of the re-
gion, time of year, and weather predictions, is normally enough
to resolve the presence of melt ponds or saturated snow on sea
ice, for example.
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Once there are no RADARSAT data available any longer, the
analyst will use the next highest resolution data source, normally
the operational line-scan system.(OLS) data from the DMSP
satellite program, which will be either visible or infrared data
depending on the time of year and hemisphere. Having provided
additional ice analysis based on OLS data, the analyst will then
move to NOAA AVHRR data (step 3, Fig. 1). In the existing ice
analysis. procedure, two further steps remain. In the first step,
DMSP SSM/T data are analyzed, having been translated into
ice concentrations using the NASA Team algorithm, provided
by the NOAA Center for Environmental Prediction (NCEP) (R.
Grumbine, personal communication). These data are used to fill
in the remaining areas of the new ice chart (step 4). As a final
step, the ice chart is quality checked by a senior analyst (step 5,
Fig. 1). An example of an ice chart, for the Sea of Okhotsk, is
shown in Fig. 2 for the week of December 7-11, 1998.

Inanidealssituation, the ice charts would be compiled on adaily
basis and so each ice chart would be comparable, in itSentirety, to
a daily SSM/I product. In practice, NIC ice charts are comfﬂlé&
using data covering a period of up to 72 h and are provided on a
weekly basis. However, the resulting ice charts, although repre-
senting a composite of up to three days of data, are not averages.
Each closed region (polygon) in an ice chart represents informa-
tion onice conditions obtained from one data source and one date.
Itis planned that in the near future, it will be possible to relate ice
chart polygons labeled with a particular ice concentration to both
the source of data used to derive the ice concentration in that par-
ticular region, as well as the actual date [3]. This will be achieved
through the use of links in the ice chart database.

There are, of course, errors in the ice concentrations obtained
manually by the analyst. To begin with, the estimate of ice con-
centration is subjective and is specified as a range of values to
reflect this. In general, a range of ice concentrations is speci-
fied (for example, if the analyst estimates 8/10 ice concentra-
tion, they will typically specify a range of 7/10 to 9/10). How-
ever, toward the upper and lower limits of ice concentration, the
errors are typically smaller and so the range of values can be
smaller (pack ice is often estimated as 9 to 10/10 ice concen-
tration and land-fast ice is estimated with some confidence as
10/10 ice concentration). In general, however, analysts tend to
estimate an error in the estimate of ice concentration of about
+1/10. The errors will also include those related to resolution
of the data being used. If ice is not resolved within a pixel of a
certain type of image data, then no ice will be detected. Thus, it
is possible that very low ice concentrations where the floe sizes
are small, will be underestimated in NIC ice charts if the ice
is highly dispersed. Furthermore, the ice chart does represent a
composite of information on ice conditions covering a period of
about 72 h and so there will be errors made in assuming that the
data are associated with a particular day.

Despite these limitations, the strength of the ice chart analysis
procedure is that it is a form of manual data assimilation that
takes into account:

1) physically realistic situations (e.g. continuity);

2) trends in ice conditions from the previous analysis;

3) awide variety of data (satellite microwave, IR/VIS);

4) forecast.ice conditions;
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Fig. 2. . Example of an NIC ice chart, disseminated to users on a weekly basis for all ice-covered seas. This example shows the western Sea of Okhotsk for
December 7-11, 1998. The symbols are'called “egg codes,” and they are explained at the U.S. NIC web site (http://www.natice.noaa.gov). They provide information
on total and partial ice concentrations. A partial ice concentration is the concentration of a particular ice type.

5) weather predictions;

6) digital climatology (statistically likely conditions);

7) knowledge of regional geography (ocean currents, etc.);
8) any reconnaissance information. B

No statistics are available to provide a quantitative assessment
of the accuracy of the ice charts. This would require wide cov-
erage and high accuracy information on ice concentrations de-
rived using data that are not used within the ice ‘analysis pro-
cedure. Thus, we cannot claim that the ice charts represent any
sort of absolute reference against which to test algorithms. Some
limited coverage evaluations of the ice charts could be carried
out, for example, using a SAR data set aside from the ice anal-
ysis procedure. However, even then, the evaluation would not be
extendable in terms of conclusions to other seasons and regions.
Thus, in describing the new SSM/I algorithm in this paper, no
independent evaluation is provided, and this represents a limi-
tation of the technique.

III. LiMITATIONS OF CONVENTIONAL SSM/I ICE
CONCENTRATION ALGORITHMS

It was shown in Fig. 1 that SSM/I is the last data source
used. to compile ice charts within the ice analysis procedure, -
primarily because it has the lowest spatial resolution of satel-
lite data. However, SSM/I is also appropriately analyzed last,
because- it has some significant biases, particularly in the mar-
ginal ice zone and during summer when accuracies are much
reduced (compared, for example, to freezing conditions in the
central Arctic). On the other hand, SSM/I data are always avail-
able and so it remains an invaluable source of data, especially in
the southern hemisphere where satellite SAR data are currently
unavailable on a routine, operational basis.

SSM/T algorithms have been based largely on simplified ver-
sions of radiative transfer models of the surface and atmosphere,
together with a mixing model that assumes that the footprint of
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TABLE 1
A SELECTION OF EVALUATIONS OF NASA TEAM. BOOTSTRAP AND CAL/VAL ALGORITHMS. * INDICATES SIMPLIFIED VERSION OF CAL/VAL CALLED THE

AES/YORK ALGORITHM [10]. “MEAN" INDICATES THE MEAN DIFFERENCE, WIT!

H A POSITIVE VALUE INDICATING THAT THE SSM/1 ALGORITHM INDICATED

MORE ICE THAN THE EVALUATION DATA. STD INDICATES STANDARD DEVIATION AND RMS INDICATES ROOT MEAN SQUARE (RMS) DIFFERENCE

Reference Conditions, | Evaluation | NASA Team Bootstrap CAL/VAL | Non-specific

Hemisphere | method accuracy accuracy accuracy algorithm
evaluation

Steffen etal. [4] | Freezing Review N/a Nfa N/a In general
North and article 3%-10% error
South

Comiso ¢t al. Freezing, Landsat Mean -8.2% Mean -6.1% | N/a Nfa

[13] North Sid 8.8% Std 9.0%

Smith [11] Freezing, AVHRR Rms 7.2% Rms 8.3% Rms 6.9%* | N/a
North

Emery ctal. [14] | Freexing, AVHRR Mean -5.7% Mean -5.3% | N/a Nia
North Sid 8% Std 9.7%

Steffen and Freezing, Landsat Mean —3.6% Nfa N/a Nfa

Schweiger [15] North Std 6.6%

Cavalieri et al. Freezing, Airborne Mean -2.4% Nia Nia Nia

[12] North sensors Std 2.4%

Emery et al. [14] | Melting, AVHRR Mean -3.1% Mean 4.8% | N/a Nfa
North Std 8.8% Sid 9.8%

Steffen ctal. [4] | Melting, Review Nfa Nfa Nia In general
North and article 10%-20% error
South

the sensor contains only open water and sea ice. These models
include

1) the NASA Team algorithm and modification for thin ice

([71. [8]:
2) the Bootstrap algorithm [9]:
3) the CAL/VAL (modified version of AES-York) algorithm
[10].
Other algorithms have also been developed (see [11]). The dif-
ferences lie in the choice of frequency and polarization combi-
nations and in the precise technique used to estimate concentra-
tion from the distribution of points in the relevant feature space.

The techniques listed here all made use of one or both of the
19 and 37-GHz channels on SSM/I (with the 22 GHz channel
sometimes used for data quality checking), but they generate
significant differences in predictions of ice concentration.
Steffen er al. [4] evaluated seven algorithms and concluded
that total ice concentration can be estimated, at best, with an
accuracy of 5-10% during nonmelt conditions and 10-20%
at other times. It has been estimated that, during the winter
months, the NASA Team algorithm has an accuracy of —3.6%
+6.6% [12]. More recently, Comiso et al. [13] found that
both the Bootstrap and NASA Team algorithms persistently
underestimated ice concentrations when compared to AVHRR,
LANDSAT, and SAR data. Table | summarizes some of the
differences found by various authors.

To augment this evaluation, a comparison of just two algo-
rithms is provided in Fig. 3 for a random day in the Arctic (De-
cember 9, 1998). Table II shows statistics that summarize dif-
ferences between these two algorithms in various regions across
the Arctic and Antarctic.

It can be seen that differences in estimated ice concentration
are substantial and vary significantly from region to region, with
the greatest differences in the Sea of Okhotsk and the smallest
differences in the central Arctic. These differences are larger
than would be expected given the figures in Table IT and indi-

NASA Team
> CALVAL

|

CALVAL >
NASA Team
+5 to 0% E]| -5to 0%

+10to +5% [] -10to-5%
+15 to +10%[] -15 to -10%
+20 to +15%[ -20 to -15%

+20 10 +30% M 20 to -30%
>+30% . |. >-30%

| JEfsye

Fig 3.

The difference between the CAL/VAL and NASA Team algorithms for
December 9, 1998, in the northern hemisphere, in terms of percent ice cover.

cate the extent of the uncertainty involved in using SSM/T as a
tool to aid operational ice analysis, particularly in the marginal
ice zone. Indeed, the figures in Table IT suggest that previous es-
timates of errors tend toward the optimistic, unless the estimates
are restricted to pack-ice in freezing conditions.
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TABLE 11

STATISTICS RELATED TO DIFFERENCES IN ICE CONCENTRATIONS ESTIMATED USING THE NASA TEAM AND CAL/VAL ALGORITHMS FOR DECEMBER 9, 1998, A
POSITIVE SIGN INDICATES THAT THE CAL/VAL ALGORITHM SHOWS MORE ICE THAN THE NASA TEAM ALGORITHM (IN THE RIGHTMOST COLUMN, THE
NEGATIVE SIGN INDICATES THAT THE NASA TEAM ICE EDGE EXTENDS FURTHER EQUATOR-WARD THAN THE CAL/VAL ICE EDGE). THE NUMBER OF PIXELS

USED FOR EACH REGION IS BROADLY RELATED TO THE SIZE OF THE REGION, WITH COASTAL PIXELS NOT USED

Region Season Mean R.om.s. Mean 0% ice
(9 December 1998) concentration | concentration | concentration edge
difference difference position difference
(%) (%) (km)
Central Arctic Winter 2.6 3.34 -71.0
East Greenland Winter 8.8 5.4 -23.0
Baffin Bay Winter 135 6:2 =230
Sea of Okhotsk Winter 29.0 8.9 -44.0
Ross — Bellinghausen | Summer 14.5 53 -24.0
Seas i
Weddell Sea Summer 15.3 62 | 210

To understand why these differences can be so large and vary
systematically from region to region, an analysis of the different
sources of error is required. A brief review of the errors is pro-
vided here. For more detail, the reader is referred to referenced
publications.

A. Tie-Point Variations

Tie-point related errors result from natural variations in
temperatures associated with inhomogeneities
within individual surface types. SSM/I algorithms make use of
reference brightness temperatures associated with two ice types
(first-year ice and multiyear ice in the northern hemisphere)
and open water. These values are known as tie points. These tie
points are used to establish definitions for 100% concentrations
of the two ice types and open water. However, all natural
surfaces have variability in their emissivity characteristics
and physical temperatures. In the NASA Team algorithm, for
example. the open water tie-point is biased toward calm water
conditions, and so areas of rough water can be given an erro-
neously nonzero ice concentration [12]. Furthermore, Steffen
and Schweiger [15] found that, in the northern hemisphere, the
NASA Team algorithm global tie point for first-year ice tends
to be higher than locally determined first-year ice tie points,
which provides one explanation as to why ice concentrations in
heavy pack are generally underestimated with the NASA team
algorithm. Comiso er al. [13] found that ice concentrations
derived from the NASA Team and Bootstrap algorithms gener-
ally varied about by between 19 and 2%, purely in response to
natural differences in the reference emissivities of ice and open
water,

Natural variations in tie points can be related to natural vari-
ations in a number of characteristics of sea ice and open water.
The open water brightness temperature, for example, will vary
according to physical temperature, wind speed, foam, and at-
mospheric effects. Sea ice brightness temperatures will vary
according to physical temperature, atmospheric effects, snow
cover characteristics, sea ice salinity, density, and roughness. To
take one example, snow cover has been shown to have an effect
on passive microwave signatures at 37 GHz and above (Fig. 4.
also [9], [13], [16], [17]). The effect is not only one of influ-
encing the signature through variations in snow thickness, but
also influencing the signature through differences in granularity,

brightness

Russia

CAL/VAL
60 50300

Bootstrap
Ice cover(%): >100 90

Fig. 4. Algorithm predictions of total ice concentration for the western Sea of
Okhotsk on December 9, 1998. The corresponding ice chart. compiled using
nearly cloud-free OLS data, is shown in Fig. 2. Total concentrations indicated
by the ice chart are generally above 9/10 within the ice edge and partial
concentrations of new and young ice types make up a significant percentage
of the total concentration.

brine content (if any), and the presence of layering. Ice layers in
snow influence horizontal polarization rather than vertical po-
larization and so have a particularly significant effect on algo-
rithms that employ the horizontal polarization at 37 GHz. The
Bootstrap and CAL/VAL algorithms make use of the 37 GHz
horizontal polarization and so are likely, on a priori grounds, to
be more sensitive to variations in snow conditions than the zz
algorithm. There do not appear to have been any studies that
attempt to quantify the effect of snow thickness on ice concen-
tration estimates, but it seems likely that variations in snow con-
ditions will be equivalent to a local change in the tie-point that
can translate into a modest error in ice concentration. There are
a range of other geophysical characteristics that influence the
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Fig. 5.

Algorithm predictions of total ice concentration as a function of ice types (fraction ice cover), with brightness temperatures derived from controlled
ohservations. Observations of new ice (with thicknesses indicated in em) are derived from Wensnehan er al. [2

7], recorded over growing saline ice. Observations

from frost flowers, pancakes. young, and multiyear ice were recorded by a shipborne radiometer sensor operating during the North Water experiment, Baffin
Bay, May 1998 (Asmus, personal communication, 1999). First-year ice data with different snow thicknesses were taken from Grenfell ef af. [28]. Given that the
foolprints in each case contained 100% of the labeled surface type. the “true” total concentrations are 0% lor open water and 100% for all ice types. All observations

correspond to freezing conditions.

tie-points and can be discussed. but instead the reader is referred
to [4]. [12] and [13] for more details.

Steffen and Schweiger [15] and others have found that the use
of local tie points can (in some circumstances) halve the RMS
difference in ice concentrations derived from SSM/I and vis-
ible/infrared sensors (AVHRR and Landsat), and the use of local
tie points is particularly important in the Arctic. However, there
are practical difficulties in implementing an SSM/I ice concen-
tration algorithm that is able to make use of local tie points in
any sort of routine manner.

B. Surface Temperature-Related Errors

Some researchers have noted that sea ice concentration can
be correlated to surface temperature, and this is a form of error
known as geophysical cross talk. The use of radiance ratios in
the NASA team algorithm enables variations in surface temper-
ature to be removed from having an effect on ice concentration
to first order (as the brightness temperature, for a particular fre-
quency and polarization, is equal to the temperature of the ice
multiplied by the emissivity). However, there may be a small
ice temperature effect on the (spectral) gradient ratio used in the
NASA Team algorithm, as the temperatures sensed by the two
different frequencies may be different due to different radiation
penetration depths. Other algorithms are probably more sensi-
tive to this error than the NASA Team algorithm. The Bootstrap
algorithm shows some sensitivity in the Southern Ocean where
there is a 2 to 5% error in ice concentrations related to ice tem-
perature variations (estimated as 0.9% per Kelvin snow-ice in-
terface temperature change) [13]. A result is that the Bootstrap
algorithm can underestimate ice concentration when tempera-
tures are on the low side (for example, —20° C). The CAL/VAL
algorithm appears insensitive to ice temperature changes, pri-
marily because it is designed for the ice margin, where surface
temperatures are close to freezing point, and the algorithm tends
to saturate (provide ice concentrations in excess of 100%) in the
interior of the ice pack.

C. Surface Meli-Related Errors

These errors cause most SSM/T algorithms to underestimate
ice concentration, Errors in ice concentration tend to double to
10-20% for algorithms during summer, and the errors are sys-
tematic [4]. In a sense, this is not an “error,” as it reflects the

fact that SSM/I classifies surface water as “open water.” Rus-
sian drift stations show that, in mid July, as much as 45% of the
ice may be covered by melt ponds [ 18], and this will be reflected
in lower estimates of ice concentration from passive microwave
data. As the sensor cannot penetrate beneath melt ponds, this
problem cannot be solved in any simple manner. The problem
will affect measurements as long as there is liquid water in sig-
nificant quantities, such as in overlying snow cover.

D. Thin Ice-Related Errors

Errors related to the presence of new and young ice types are
not explicitly accounted for in the existing operational SSM/I
ice concentration algorithms. Thin ice types have passive mi-
crowave signatures that are distinct from both open water and
first-year sea ice and are not accounted for explicitly in con-
ventional SSM/I algorithms. Thus, in general, the application
of a conventional SSM/I algorithm to an area of 100% thin
ice concentration will tend to estimate it as some percentage
of open water cover. In freeze-up conditions, there will always
be a tendency for ice concentration to be underestimated as a
result of this effect. Fig. 5 shows sea ice concentrations pre-
dicted for the Sea of Okhotsk on December 8. 1998, where a
high concentration of new and young ice types (indicated by
the ice chart in Fig. 2) creates major discrepancies in the pre-
dictions of ice concentrations from the different algorithms. A
tendency of the NASA Team algorithm to significantly under-
estimate ice concentration in the Sea of Okhotsk has been noted
by [19]. The differing sensitivities of the algorithms to thin ice
types is confirmed in Fig. 4, which shows apparent ice concen-
tration as estimated using the four algorithms listed above with
brightness temperatures obtained from controlled observations
from known ice types. It can be seen that the algorithms have
varied responses to the presence of thin ice, pancakes, and frost
flowers.

The explanation for this problem is that the emissivity ol new
ice can range from that of open water to first-year ice (0.45 to
0.92). Steffen and Schweiger [15] found that the presence of
nilas and young ice could create an underestimate of ice con-
centrations from SSM/I of 9% (with global tie points) and 4%
(with local tie points), using the NASA Team algorithm. The re-
sults shown here indicate that the errors can be much larger in
areas where thin ice types predominate. A thin ice formulation
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of the NASA team algorithm helps to correct for these ice types
([8] and Fig. 5), but the algorithm cannot deal simultancously
with multiyear ice, first-year ice, and thin ice.

E. Atmospheric Transmission Errors

These errors are caused by the susceptibility of passive mi-
crowave sensors to cloud liquid water and water vapor, inte-
grated along the path length of the radiation. These errors are
currently impossible to predict reliably, so SSM/I algorithms
make use of weather filters to reject ice concentrations over open
ocean. Ice concentrations can be affected by both integrated at-
mospheric liquid water and water vapor content. Oelke [20] has
used radiative transfer modeling to assess the impact of weather
systems on ice concentrations derived using the NASA Team
algorithm. He found that cloud liquid water content and water
vapor both artificially increase total ice concentrations, but de-
crease multiyear ice concentration. Near surface winds tend to
increase ocean emissivity and thus add to spurious ice concen-
frations over the open ocean. Sensitivity to the atmosphere has
been the main reason why the 85-GHz channel has not been
as popular for retrieving ice information as its high spatial res-
olution would suggest ([21]. [22]). Researchers are currently
working on methods to account explicitly for the atmosphere
in SSM/T algorithms [23].

F. Resolution-Related Errors

These errors represent uncertainty in the location of data. The
CAL/VAL algorithm, for example, uses the 37-GHz channel
alone to estimate ice concentrations at the ice edge, and this re-
sults in an ice edge that is generally at least 20 km poleward
of the ice edge generated by the NASA Team algorithm (which
uses the 19-GHz channel). This is a season-and-hemisphere in-
dependent result that reflects the different resolutions associated
with the 19 and 37-GHz channels, which have an effective field
of view (along-track, across-track) thatis (69, 43 km), at 19 GHz
and (37, 28-29 km) at 37 GHz (Table II). The finite resolution
also explains why the rule-of-thumb for the NASA Team algo-
rithm is that the actual ice edge corresponds to the 15% ice con-
centration contour [12].

In summary, there are significant deficiencies in the conven-
tional SSM/I algorithms that make the search for climate signals
and operational use problematic. The results presented here sug-
gest that the errors are larger for some algorithms than has been
suggested by other studies (at least on a regional basis). A mean
difference of 29% in ice concentration for the Sea of Okhotsk
from two algorithms, with maximum differences in excess of
50%, is extremely large. In order to improve the estimation of
ice concentrations from SSM/I for operational ice monitoring, a
different approach is needed than that provided by conventional
SSM/T algorithms.

IV, DATA FUSION ALGORITHM FOR DERIVING ICE
CONCENTRATIONS FROM SSM/I
The issues discussed above limit the utlity of conventional
algorithms for operational ice monitoring and for scientific ap-
plications and it has become increasingly clear that substantial
improvements in the quality of information derived from SSM/I

Previ
NIC

Weather
P
art

PIPS

Preparation & ews

Clhimatology

:E;

RADARSAT 0.8 GB/day

DMSP OLS

P 2 GBlday

~ (2)| Analysis

N

AVHRR 2 GB/day
“Partial " ice chart

| . SSMYT brightness
@ SI Algorithm =

temperatures
St Algorithm ouiput

Quality checking .[‘

New NIC chart

Fig. 6. Proposed new ice analysis procedure, showing the formation ol a
partial ice chart and its use in the SSM/T interpolation (ST) algorithm.

can only be achieved by bringing in ancillary information. The
conclusion from Steffen et al. [4] was that data assimilation/fu-
sion and artificial intelligence methods (possibly making use of
decision making to operate a hybrid algorithm) offer the greatest
promise for resolving ambiguities in the passive microwave al-
gorithms.

Some researchers have already begun to explore the possi-
bility of retrieving ice information from SSM/I in combination
with other data or models, as a way to reduce the ambiguities of
weather effects, etc. These include the combination of AVHRR
and SSM/I to classify sea ice, open water, land. and cloud [24].
the constraint of SSM/I ice concentrations using SAR data [25].
and the use of a physical model to constrain ice concentration
estimates from SSM/I over time [26]. A data assimilation ap-
proach to the problem has particular potential, and in the long
term appears to be the most promising way forward. In the
shorter term, using other forms of data to constrain the SSM/I
algorithm in a form of data fusion is easier to implement. How-
ever, if the data that are used to constrain the SSM/I are them-
selves ambiguous, as in the case of AVHRR (through cloud-ice
ambiguities) and SAR (through water-ice ambiguities), it can be
difficult to design an algorithm that is operationally practical.

The algorithm proposed here, provisionally called the SSM/1
interpolation (SI) algorithm, attempts to compensate for limita-
tions in the conventional algorithms and biases inherent in the
sensor, by tuning the algorithm to ice concentration informa-
tion available in NIC ice charts. The aim is that this would be
a near-real time procedure in which the ice analyst routinely
makes use of a tuned SSM/I ice concentration algorithm during
the compilation of ice charts. The proposed context of the new
algorithm is illustrated in Fig. 6, which should be compared with
Fig. 1. The SI algorithm would replace the stage in the analysis
procedure, where a conventional SSM/I algorithm is employed.
The analyst would generate an ice chart with closed regions at
step 3 in the analysis procedure, and all areas that had not been
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d,= Principal component 3

d,= Principal component 4
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d, s= NASA Team partial concentrations
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Fig. 7. Flow diagram showing details of the SI algorithm. The number
associated with the principal component (3, 4, or 5) refers to the level of overall
variance explained, so that 3 would indicate the component with the third
highest level of variance. The principal components are calculated using data
from the region covered by the ice chart and do not include land.

assigned ice concentrations at that point would be given a “no
data” label. This is the so-called “partial” ice chart, which is
based solely on reconnaissance, RADARSAT, and cloud-free,
AVHRR and OLS data. The analyst would then run the ST al-
gorithm on the partial ice chart, and it would optimally match
calculated SSM/I attributes to the ice concentrations in the par-
tial ice chart using the procedure illustrated in Fig. 6. The calcu-
lated model coefficients would then be used to “interpolate” ice
concentrations for the “no data” regions remaining in the par-
tial ice chart. The analyst would then use these interpolated ice
concentrations from SSM/I to complete the ice chart.

This approach has the following advantages.

1) The algorithm is tuned as frequently as ice charts are
generated (weekly in most regions and twice weekly in
some).

The algorithm is tuned to the region being analyzed,
effectively taking into account regional anomolies in
salinity, snow -conditions, etc. This is equivalent to
generating location-specific and time-specific tie points.
The tuning parameters can be used to:help define a re-
gional and temporal database for future and retrospective
processing of passive microwave data.

The SI algorithm is a simple, statistical least squares procedure
that takes attributes derived from the SSM/I brightness temper-
atures and generates linear mapping coefficients that allow the
SSM/I attributes to be mapped to total ice concentration, with
the latter extracted from the so-called partial ice charts. The
equation is defined in Fig. 7. A critical element of the algo-
rithm is the choice of attributes, as inappropriate attributes will
make the mapping function inefficient. The attributes selected
for implementation include the partial ice types calculated by
the NASA Team and Bootstrap algorithms and selected prin-
cipal components of the SSM/I data. The rationale for including
these attributes is as follows.

1) The NASA Team and Bootstrap algorithms provide in-
dependent estimates of two partial ice type concentra-
tions ([7], [9]). In the northern hemisphere these corre-
spond predominantly to first-year and multiyear ice. The

2)

3)
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Fig. 8. Principal components of the SSM/I data applied to controlled sea
ice and open water observations (a subset of those in Fig. 5), where the
eigenvectors are generated using principal component analysis from the
entire Arctic (excepting land masses) for December 9, 1998. The component
intensities are normalized from 0 to 100.

NASA Team algorithm explicitly provides equations for
these two partial ice type concentrations:-The Bootstrap

algorithm does not provide this information exphcltly, but -

Comiso [9] shows that the end clusters along the line cor-
responding to 100% ice concentration in both polariza-
tion and frequency space {(clusters A and D in Fig. 9 in
[91, for example) represent first-year and multiyear ice in
the northern hemisphere. Hence, it is possible to calcu-
late the proportions of these two ice types in the Boot-
strap algorithm by assuming that these two end points
represent 100% concentrations of each ice type. The par-
tial ice types from both algorithms, added together as
components of a linear function, are expected to be ef-
ficient measures of the concentration of ice of young age
and older (Fig. 4). However, note that within the SI algo-
rithm, no assumption is made about what particular ice
types these partial concentrations refer to. The fact that
these partial concentrations are multiplied by linear coef-
ficients should enable the SI algorithm to compensate, to
some degree, for underestimation of ice concentration in
the summer melt period. The NASA Team and Bootstrap
partial concentrations were selected because other algo-
rithms are less well evaluated or do not provide as much
information. The CAL/VAL algorithm, for example, gen-
erates ice concentration predictions that saturate at 100%
over most of the ice extent, so it was likely that it would be
inefficient as an attribute for the SI algorithm. However,
additional or different algorithm concentrations could be
added to the SI algorithm if required.

The lower variance principal components of the SSM/I
data tend to be related to the presence of thin ice. This has
been demonstrated by Wensnehan et al. [27] and Grenfell
et al. [28], following earlier principal components anal-
ysis [29]. Hence, these attributes are included to counter
the known tendency of the NASA Team and Bootsirap
algorithms to underestimate ice concentrations in areas
of thin ice. Fig. 8 shows third, fourth, and fifth prin-
cipal components of data from December 9, 1998 are all
strongly related to the presence of new ice. The third,
fourth, and fifth principal components of the data (in order
of decreasing variance) are included as a way of picking
out conditions that the NASA Team and Bootstrap algo-
rithms fail to detect, including the presence of thin ice

2)
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Boolslrap

S1 algorithm

16 November 1948

Fig. 9. Maps showing predictions of ice concentration from the NASA Team,
the partial ice chart used to “train” the SI algorithm. Blue indicates no data, red
is shown in white. North is approxim;

TABLE 1II
CONVERSIONS FROM RANGES OF ICE CONCENTRATIONS PROVIDED IN ICE
CHARTS TO DISCRETE ICE CONCENTRATION VALUES

Ice concentration range (tenths) | Assigned value | Estimated error
Ot 1 0.05 +0.05
Oto2 0.1 0.1
204 0.3 #0.1
4106 0.5 +0.1
6108 0.7 +).1
8o 10 0.9 +0.1
91010 0.95 +0.05

and, perhaps, snow depth effects. The first and second
principal components are not included as they are ef-
fectively already used in the conventional SSM/I algo-
rithms, although the principal components are coordi-
nate transforms of the information used in the conven-
tional SSM/1 algorithms. The spectral gradient ratio in the
NASA Team algorithm, for example, is directly compa-
rable to the second principal component. The ST algorithm
will ensure that if these low variance principal compo-
nents do not add to the overall ability of the algorithm to
predict ice concentration in a region, then they will not

Partial ice

Bootstrap, CAL/VAL, and SI algorithm for the Barents Sea. Also shown (right), is
indicates 100% ice concentration, and green indicates 0% ice concentration, Land

ately toward the lower left corner of each map

be used (the coefficients will be very small). Note that
these components contain information from the 85-GHz
channel, and so will be sensitive to atmospheric influ-
ences as well as thin ice cover and, perhaps, snow cover.
Although these so-called “partial” ice charts are not routinely re-
tained at the NIC, for the purposes of this study. partial ice charts
were collected for the Barents Sea for the period of November
2, 1998 to December 14, 1998. In order to make use of the NIC
partial ice charts, the ice chart data had to be converted, in most
cases, from a range of concentrations to a single concentration
value. Ice analysts normally enter a range of ice concentrations
for each region of the ice chart as they are not always able to de-
termine ice concentrations o the nearest tenth. The conversions
were carried out as shown in Table 11
In addition, the data were converted to a raster format, and
polar stercographic projection consistent with the SSM/I an-
tenna temperature data was provided by the NOAA NCEP (R.
Grumbine, personal communication). In the partial ice charts,
ice concentrations were indicated by a number between 0 and
100 (indicating ice concentration as a percentage of complete
ice cover), and areas of no data were indicated by a value of
—99. Implicit in this mapping procedure is the need to reduce
the resolution of the ice chart data. This is achieved by a local
averaging of the concentrations provided in the ice charts.
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Fig. 11, Mean absolute difference between ice concentrations trom algorithms
and partial ice charts as a function of date for the Barents Sea,

Fig. 9 shows the results of applying the SI and conventional
algorithms to the Barents Sea, together with the partial ice chart
used to tune the SI algorithm. The subtle differences between
the algorithms are difficult to see, but the figure does show that
the SI algorithm is stable outside the area for which data were
available to generate the coefficients, and this was found to be
the case for all the examples that were investigated. Statistics
have been derived to describe the differences between the par-
tial ice charts and the SI and conventional algorithms. These
statistics are illustrated in Figs. 10 and 11. Fig. 10 shows the
mean difference between the partial ice chart and each algo-
rithm as a function of date. This shows that the SI algorithm
is successful in reducing much of the sometimes significant dif-
ference between the conventional algorithms and the partial ice
charts derived from RADARSAT data and cloud-free AVHRR
and OLS data. The mean difference reduces from a range of
—15 to +5% for the conventional algorithms to a range of be-
tween —35 and 0% for the SI algorithm. In general, the mean
difference between the SI algorithm and the partial ice chart is
30% (or less) of that of the conventional algorithms. Note that
there is perhaps more similarity between the three conventional
SSM/T algorithms than differences. In early November, the algo-
rithms all predict mean ice concentrations within 5% of the par-
tial ice chart (and thus within the error range of the ice chart). In
late November and December, the three conventional algorithms
show a significantly smaller mean concentration than that of the
partial ice chart.

Fig. 11 shows the mean absolute difference between the ice
chart and each algorithm as a function of date. It can be seen
in this case that the SI algorithm reduces the mean absolute dif-
ference from around the typical 10-15% of the conventional al-
gorithms (o between 5-10%. These differences are quite large
and reflect the fact that the test region includes the marginal ice

zone. It must also be remembered, however, that there is imper-
fect matching in time between the SSM/I data and the partial ice
chart source data (generally a difference of up to 36 h). If the ice
charts were made available on a daily basis, as is the aim at the
NIC for some regions [3], then this would improve the match be-
tween the SSM/I data and the ice charts, and at the same time,
would improve the performance of the SI algorithm.

It is useful to consider the stability of the coefficients calcu-
lated in the ST algorithm from week to week. The variance due
to the partial concentrations of the principal components (as op-
posed to the NASA Team and Bootstrap partial concentrations)
varies from a minimum of 7.64% to a maximum of 48.5% and
is not particularly consistent from week to week. This level of
inconsistency from week to week probably reflects the sensi-
tivity of these components to atmospheric influences as well as
thin ice cover. The SI algorithm will effectively make use of
the principal components as a form of weather [ilter as well as
a method of detecting thin ice. The sensitivity to atmospheric
conditions that is undoubtedly a feature of these principal com-
ponents, largely as a result of the 85-GHz channel, means that
the ST algorithm will modify the coefficients from week to week
depending on changes in synoptic weather conditions.

Overall, these results indicate that the SI algorithm is suc-
cessful at tuning an SSM/I algorithm to ice chart data. Further-
more, the technique does not exhibit any obvious “unstable™
behavior within the “no data™ region of the partial ice chart
(in other words, outside the area that was used to calculate the
model coefficients). However, there are certain limitations to the
technigue and its evaluation reported here that need to be made
explicit.

1) There has been no independent verification of the per-
formance of the technique. It has been shown that the
technique is successful at closing the gap between ice
chart-derived ice information and SSM/I-derived ice in-
formation. The SI algorithm will only be as good as the
quality of the ice chart.

2) The SI algorithm will become less stable as the propor-
tion of the area in the partial ice chart labeled *no data”
increases.

3) The performance of the SI algorithm depends on a good
match in time between the concentrations derived from
the cloud-free visible and SAR data. If the data that are
used to generate concentrations in the partial ice chart
are spread over a period of more than perhaps two con-
secutive days, then the performance of the algorithm will
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degrade significantly. In the ideal situation, the algorithm
would be used in helping to compile daily ice charts
where there is a reliably close match in time between the
ice chart and the SSM/I data. With the current weekly
ice charts from NIC, there will be some error introduced
into the SI algorithm by using SSM/I data recorded on
one day.

The technigque has not been tested on summer data, al-
though it is expected that it will compensate to some de-
eree for the sensing difficulties associated with summer
data. The tie point associated with summer sea ice will be
closer to that of open water. The algorithm will use the ice
chart to associate these modified tie points to 100% ice
cover, and will generate the linear mapping coefficients
accordingly.

The SSM/I data can provide a precision in ice concentra-
tions that the NIC ice charts lack. This is because they
provide precise calculations of ice concentration (even if
they are subject to, in some cases, gross errors, as dis-
cussed earlier).

4

—
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V. CONCLUSIONS AND RECOMMENDATIONS

The ST algorithm is a practical technique for use by the op-
erational ice community and generates significantly improved
performance over conventional algorithms when referenced to
ice chart information. In addition, the technique is practical for
near-real time ice monitoring. The algorithm represents a new
approach to the use of SSM/T data for operational ice moni-
toring. and has the following advantages:

1) automated tuning of the algorithm to the date and region
of interest;

2) no manual intervention required (beyond production of

the ice chart itself, which is an existing procedure);

some correction for sensing biases such as underestima-

tion of thin ice and weather effects:

4) flexibility in terms of the atributes used in the program
(new attributes can be added to increase the model fit
achieved by the algorithm).

3

—

The disadvantage of the algorithm is that it is only as good as
the ice chart from which it is derived. Any biases in the anal-
ysis procedure will be inherited by the algorithm. This algo-
rithm will tend to reinforce any such biases by trying to include
them through the linear coefficients. Thus, it is important that
the analysis procedure is carefully monitored to minimize such
effects.
The following recommendations are made.

1) The algorithm should be tested with different attributes to

see whether there are systematic differences in the level
of performance.
The algorithm should be tested for summer conditions
when it is expected that algorithm will have some success
in compensating for the more severe underestimation of
ice concentrations by conventional SSM/I algorithms.

I
—

Operational implementation and testing of the algorithm is
planned at the NIC.
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